The flexible structure of the K24S28 region of Leucine-Rich Amelogenin Protein (LRAP) bound to apatites as a function of surface type, calcium, mutation, and ionic strength
نویسندگان
چکیده
Leucine-Rich Amelogenin Protein (LRAP) is a member of the amelogenin family of biomineralization proteins, proteins which play a critical role in enamel formation. Recent studies have revealed the structure and orientation of the N- and C-terminus of LRAP bound to hydroxyapatite (HAP), a surface used as an analog of enamel. The structure of one region, K24 to S28, was found to be sensitive to phosphorylation of S16, the only naturally observed site of serine phosphorylation in LRAP, suggesting that K24S28 may sit at a key region of structural flexibility and play a role in the protein's function. In this work, we investigated the sensitivity of the structure and orientation of this region when bound to HAP as a function of several factors which may vary during enamel formation to influence structure: the ionic strength (0.05, 0.15, 0.2 M), the calcium concentration (0.07 and 0.4 mM), and the surface to which it is binding [HAP and carbonated apatite (CAP), a more direct mimic of enamel]. A naturally occurring mutation found in amelogenin (T21I) was also investigated. The structure in the K24S28 region of the protein was found to be sensitive to these conditions, with the CAP surface and excess Ca(2+) (8:1 [Ca(2+)]:[LRAP-K24S28(+P)]) resulting in a tighter helix, while low ionic strength relaxed the helical structure. Higher ionic strength and the point mutation did not result in any structural change in this region. The distance of the backbone of K24 from the surface was most sensitive to excess Ca(2+) and in the T21I-mutation. Collectively, these data suggest that phosphorylated LRAP is able to accommodate structural changes while maintaining its interaction with the surface, and provides further evidence of the structural sensitivity of the K24S28 region, a sensitivity that may contribute to function in biomineralization.
منابع مشابه
Protein Phosphorylation and Mineral Binding Affect the Secondary Structure of the Leucine-Rich Amelogenin Peptide
Previously, we have shown that serine-16 phosphorylation in native full-length porcine amelogenin (P173) and the Leucine-Rich Amelogenin Peptide (LRAP(+P)), an alternative amelogenin splice product, affects protein assembly and mineralization in vitro. Notably, P173 and LRAP(+P) stabilize amorphous calcium phosphate (ACP) and inhibit hydroxyapatite (HA) formation, while non-phosphorylated count...
متن کاملEffect of phosphorylation on the interaction of calcium with leucine-rich amelogenin peptide.
Amelogenin undergoes self-assembly and plays an essential role in guiding enamel mineral formation. The leucine-rich amelogenin peptide (LRAP) is an alternative splice product of the amelogenin gene and is composed of the N terminus (containing the only phosphate group) and the C terminus of full-length amelogenin. This study was conducted to investigate further the role of phosphorylation in L...
متن کاملThe COOH terminus of the amelogenin, LRAP, is oriented next to the hydroxyapatite surface.
The organic matrix in forming enamel consists largely of the amelogenin protein self-assembled into nanospheres that are necessary to guide the formation of the unusually long and highly ordered hydroxyapatite (HAP) crystallites that constitute enamel. Despite its ability to direct crystal growth, the interaction of the amelogenin protein with HAP is unknown. However, the demonstration of growt...
متن کاملAmelogenin exons 8 and 9 encoded peptide enhances leucine rich amelogenin peptide mediated dental pulp repair.
Amelogenins containing exons 8 and 9 are alternatively spliced variants of amelogenin. Some amelogenin spliced variants have been found to promote pulp regeneration following pulp exposure. The function of the amelogenin spliced variants with the exons 8 and 9 remains unknown. In this study, we synthesized recombinant leucine rich amelogenin peptide (LRAP, A-4), LRAP plus exons 8 and 9 peptide ...
متن کاملPhosphorylated and Non-phosphorylated Leucine Rich Amelogenin Peptide Differentially Affect Ameloblast Mineralization
The Leucine Rich Amelogenin Peptide (LRAP) is a product of alternative splicing of the amelogenin gene. As full length amelogenin, LRAP has been shown, in precipitation experiments, to regulate hydroxyapatite (HAP) crystal formation depending on its phosphorylation status. However, very few studies have questioned the impact of its phosphorylation status on enamel mineralization in biological m...
متن کامل